Cooperative Quaternion-based Manipulation without Force/Torque Information
نویسندگان
چکیده
This paper proposes a task-space control protocol for the collaborative manipulation of a single object by N robotic agents. The proposed methodology is decentralized in the sense that each agent utilizes information associated with its own and the object’s dynamic/kinematic parameters and no on-line communication takes place. Moreover, no feedback of the contact forces/torques is required, therefore employment of corresponding sensors is avoided. An adaptive version of the control scheme is also introduced, where the agents’ and object’s dynamic parameters are considered unknown. We also use unit quaternions to represent the object’s orientation. In addition, load sharing coefficients between the agents are employed and internal force regulation is guaranteed. Finally, experimental studies with two robotic arms verify the validity and effectiveness of the proposed control protocol.
منابع مشابه
Robust Cooperative Manipulation without Force/Torque Measurements: Control Design and Experiments
This paper presents two novel control methodologies for the cooperative manipulation of an object by N robotic agents. Firstly, we design an adaptive control protocol which employs quaternion feedback for the object orientation to avoid potential representation singularities. Secondly, we propose a control protocol that guarantees predefined transient and steadystate performance for the object ...
متن کاملRobust Quaternion-based Cooperative Manipulation without Force/Torque Information ?
This paper proposes a task-space control protocol for the collaborative manipulation of a single object by N robotic agents. The proposed methodology is decentralized in the sense that each agent utilizes information associated with its own and the object’s dynamic/kinematic parameters and no on-line communication takes place. Moreover, no feedback of the contact forces/torques is required, the...
متن کاملFlexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملDecoding tactile afferent activity to obtain an estimate of instantaneous force and torque applied to the fingerpad.
Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile aff...
متن کاملManipulation Control of a Flexible Space Free Flying Robot Using Fuzzy Tuning Approach
Cooperative object manipulation control of rigid-flexible multi-body systems in space is studied in this paper. During such tasks, flexible members like solar panels may get vibrated that in turn may lead to some oscillatory disturbing forces on other subsystems, and consequently produces error in the motion of the end-effectors of the cooperative manipulating arms. Therefore, to design and dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.01297 شماره
صفحات -
تاریخ انتشار 2016